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INTRODUCTION

One of the most serious limitations of single scattering code AGAUS, as

developed under previous contracts, was the inability of the internal Mie

routine to provide reliable results for large diameter particles and

situations involving relatively large absorption. These limitations have been

reduced substantially through the replacement of the older forward recursion

Mie routine by one using partial backward recursion and a method of continued

fractions.

The new routine has been made operational on the HP computer system at the

US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM, and

has been coded to serve as a direct substitute for the earlier routine. This

report has been written to serve primarily as documentation of the new

routine. For the sake of completeness a brief review of the Mie theory has

been included as well as symbolic definitions, flow charts for the new routine

and a discussion of its reliability.

It should be noted that the new routine has been coded to have the same

name (MIEGX) as the older Mie routine. This was done for ease of replacement

by users who do not wish to revise other portions of AGAUS to reflect a change

of name. The new routine can be easily distinguished from the older one by

its use of complex arithmetic.
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MIE THEORY

Mie theory predicts the scattering by and the absorption in an

isolated, discrete, homogeneous, isotropic sphere of diameter D with

a known complex refractive index n = m-ik relative to the surrounding

medium and illuminated by monochromatic radiant energy with wavelength

X in the surrounding medium. The theory is given in detail in standard

texts and need not be repeated here. Instead, those elements of theory

needed for an understanding of the numerical algorithms used are

included.

All scattering properties of spheres are computed from m and k,

and through the use of the induced electric and magnetic multipole

moments of the sphere an and b , respectively. The moments are given byt

'Y(n) ' (a)-n N' (na) P'(cz)
n n nn V(na)n n ( Q) - n Tn(n ) E'(a)an = "(ni) (c)-n N' (n ) '(cz) ' ()

n n n n

and
n T'(na) T (a)-T (na) '(c)

b n n n n
n nY(na) & ()-Tn (na) '()

n n n

This section is partially based on material taken from ECOM report
ECOM-5558 by R.B. Gomez, C. Petracca, C. Querfeld and G.B. Hoidale,
March 1975, and the final report on Contract DAAD07-78-C-0063 by Miller
et al., December 1978.

t Note that n is used as a subscript, an integer index and a complex

index of refraction when it is not a subscript.
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The prime denotes differentiation with respect to the argument. The

F (z) and & (z) functions are Ricatti-Bessel functions of the first

and third kind, respectively, and are related to spherical Bessel

functions i (z) and nn (z) by

' (Z) = z jn (z), (3)n

and

Sn(Z) = Zn (Z)-i Zn n(z) T n(z) + iXn(Z ) ,  (4)

where

-2T)

n(z) = (-z Jn+i/ 2(z) (5)

and

n (z) = (y) Nn i/2(z). (6)

The function Jn+I/2 (z) is the half integral order Bessel function; the

function N+i/2 (z) is the half integral order Neuman function.

The extinction cross section is computed trom

Cext = 2 (2n+l) Re (a +bn), (7)
n=l n n

and the scattering cross section from

sca n= n IbnI]. (8)

The various cross sections are the basic quantities used in scattering

problems, but they are not the quantities usually computed directly from

7



Mie algorithms. Instead, it is more convenient to compute dimensionless

efficiency factors Qext and Q sca' which depend on n, k, and a, and which

are multiplied by the geometrical sphere cross section to obtain the true

cross section Ci = irr
2Q. Thus,

Qext n= (2n+l) Re(a n+b ), (9)
n~l

and

sca= -~~ (2n+l)[Ia n2 + lb 12]. (10)

Although the cross sections account for the energy removed from the

forward beam, they do not give any information about where the scattered

photons go. This information is contained in scattering amplitudes and

intensity factors which relate the flux density scattered through an

angle 6 relative to the incident flux density. There are two amplitudes,

S1(0) and S2 (e), and intensity factors i1 (8) and i2 (6), which correspond

to light respectively polarized perpendicuiar and parallel to the plane

of scattering defined by the direction of incidence and the direction of

scattering.

The intensity factors are related to the scattering amplitudes by

i e) = is (6)12 , (11)

12(e) = 1s2(e)l2 , (12)

I3(0) - Re{SI'S2 }, and (13)

14(6) = -Imag S 'S2 . (14)

Sl
4 1 2



The amplitudes come from the multipole moments through

SI(8 = [2n+l
S (0) n(n+l) [ar (e) + b-r(e)] (15)

n=1  n n n n

and

S 2n+l ,.$ 2 (e) = [n--n+ll)[bnvn(O) + a ()], (16)
n= 1  n n

and angular factors n (0) and T (6) defined in terms of associatedn n

Legendre functions:

7 (e) = P1 (cose)/sin6, (17)
n n

dPl(cose)
Tn(e) = ndO (18)

The amplitudes have relative phase 6 = argS 1 - argS 2.

Alternative expressions frequently used are

dP (cosO)

n "  d(cose)

and

dv (8)

(8) = cose-n (e) -sin2. dicose) ' (20)
n n coO

where

P (case) 1 d (cos2 e-) n. (21)
n 2n! dcosn8

9



the single scattering albedo w , which gives the probability that the

photon is scattered:

65 ( p(B)d~dcose = 2 f[i (e)+i 2 (O)Idcose (26)

4 Cext J

or

0 = C /C (27)o sca ext

For the special case of e = 180, backscatter, the efficiency is

expressed by the radar cross section a. The radar cross section may

be defined as 41T times the backscattered power per steradian divided

by the incident power per unit area or

a = 47r 2 1(r,1800)/Io .  (28)

This can be reduced by the relations

Io{il()+i()

I(r,Q) = 1 1(6) + i2 (e)) (29)
2k

2r2

and

i1 (10°) = i2(10) Is 1(L80°)12  30)

Thus

a= Is1 (l8ol (31)

and when divided by the geometrical cross section, G =a
2 ,

o 4S 1 ( 1 80 ° )1 2

Qradar G G2 ' (32)

where a ka. Using

10
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These functions satisfy the following recurrence relations:

r (e) cosO (2n-1) (e) n T (e) (22)
n (n-1) n-i n-i n-2

and

T n(e) = cos[r n(e)-rn-2 (6)]-(2n-l)sin
2 GT 1 ()+7 n-2(e). (23)

The scattering cross section measures the ability of a particle to

scatter light, and it is to be expected that C is obtained from ansca

integral over the scattering intensity factors. Equation (8) follows from

sca 4 J (il() - i2 (e)) dcose. (24)
-1

Although the intensity factors themselves may be used in scattering

calculations, they are primarily suited for computing flux densities,

and it is frequently more convenient to measure and compute scattered light

in terms of radiances. Radiances do not have the 1/r2 dependence, and it

is therefore unnecessary to know the distance from the scatterer to the

detector if the detector field ot view is small and is filled by the

scattering cloud. The phase function po6) gives a radiance I scattered

into the e direction in terms of the radiance I incident on the particle.0

The phase function is dimensionless and is defined here as

X2

p(e) = 2 (6il(C) + i2 (0)]. (25)

The normalized phase function p(e)dQ/4w gives the probability of a

photon being scattered through an angle e into an element of solid

angle d§ = d4dcose. The integral of the normalized phase function is

11



''I

1

-T (180*) T (1800) = (-1) n
. nkn+l), (33)n n

one obtains

-SI (1800) = 2 180 0 ) (n + 1)(_,)n(, -b ). (34)
n= 1 n n

An alternate method of representing the phase functions is with

series:

n-i

p(e) = @ JPktcose), (35)
t= 0

where the Legendre expansion coefficients EZ are given by

I£
-£ (2£+1) !

21 pk)P(cose)d(cose) 36)

and PZ>cos8) are the usual Legendre polynomials.

SUBROUTINE MIEGX

Subroutine MIEGX computes various efficiency factors, and intensity

factors il , i 2 Y i3 , and i4 for each complex refractive index m and size

parameter a (or x). The Ricatti-Bessel functions and their derivatives

in Eqs. (1) and (2) are computed by the forward recursion method,

() 2n-I
n(Z) =--n-- nl(z) - %n 2 (z), (37)

where

E(Z) = 1n(z) + iXn(Z), and z is any complex quantity.

The initial values used in forward recursion are

12
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t'(z) - sin z,
0

= sin z - Z
1 z

Xo(z) = cos z, and

= + sin z.z

The angular functions r! and T are also corputed by forward recursionsn n

from Eqs. (22) and (23). The initial values used are To(e) = 0, r1(e) = i,
To() = 0, and T (e) = cose.

0 1

For computational purposes it is more convenient to write Eqs. (1) and (2)

+
in the following for,

A(n c) 1
n + +L Re[ (a)]- Re n (W)]

a = n c n n-1
n A n (ni ) (a3 ()

n + a n - n-i

[n.A (nia) + -] Re[n (a)] - ReIn (W)]
b n i n i ai n n-1 (39)

IniA (n co) + a] E (ai) - (ai)

J -(n a)

where A (n 00 Z J. Jn (40)n I z J(nia)

and v = n + . The symbol n is used here for the complex index of

refraction to distinguish it from subscript n.

Methods utilizing either forward or backward recursion on the ratio

have been applied to the problem and both methods have their own unique

problems. Forward recursion methods are limited by the number of

+"Development of Programs for Computing Characteristics of Ultraviolet
Radiation," IBM Corp., 1972, Technical Report for Contract No. NASS-21680
(NASA)

13



significant digits in the computer. Backward recursion methods must,

of course, calculate AN for some N larger than the n required for

convergence of the Mie sums. Both methods usually require double

precision arithmetic and have been shown to fail for cases involving

large a and/or a large imaginary part of the refractive index.

This subroutine uses the method of continued fractionst to

calculate the ratio AN independent of any previous value. The ratio

is correct to the accuracy of the machine. The values of A for n<N
n

are then calculated using the backward recursion formuia

Jn-2 (z) 2n-1 Jn(z)

Jn-l(z) izn-l (z)

If convergence of the 'Xie summations requires n>N, then A2N Is

calculated, again independent of previous A 's, and backwardn

recursion is used to calculate A for N+1<n<2N.
n

tThis description is based, in part, on technical report ECOM 5509 (1973)
AD767223 by W.J. Lentz. An article covering the same material can be
found in Applied Optics 15, No. 3, 68 (1976).

14



A continued fraction may be written as

f a a0 + b1

cI + b2

c 2 + b 3

C3 (42)

or
bI  b b3

f =a0 + b b 2 b (43)
0 C1 +C2 +c3+

th

The n approximate convergent to the continued fraction representation

of f is written as

b, b

f = a0 +- 2 (44)
n c1 + ... + cn

Continued fractions may be generated from a three-term recursion relation

in a simple way:

v-I 2v v+l 2v 1
J z 3 z

2(v+l) -v+2

z 2(v+l) - 2(v+2) -

z z

So

3v- 2vz 1 - 1 1 (46)

V 2(v+L)z -  - 2(vi2)z-  -

For simplicity the argument z may be suppressed.

15



This form is one of a simple continued fraction which may be defined as

1 1 1 1

f(x)=+ a +.. (47)1 a2 +a3 +a4 +an+

where a # 0 and the a's may be negative. Equation (47) may be written

in the more convenient notation of

f(x) = [al, a2, a3 ... ]. (48)

th
The n convergent is written in like manner:

fn(x) - [al, a2, a3 ... ,a] (49)n v3 '9n

Lentz has shown that

[a I ]... [an_ ,.... , a 1 la n , .... , a l ]

f (x) = 1 n-(50)
n - [a2j ... ta . . ... , a2]Ian ...n' a2 (

The advantage of this method is that the calculation begins with the first

term (rather than the end) of the fraction and is terminated when it is

determined that

[a- i , 1a] • (51)

Jak,..]

The value of c depends on the accuracy needed or on the number of

significant digits available on the computer used.

The ratio J /J can be written in a similar form with

a n (-l)n+ 1
2 (v+n+l)z

-1.

n

16 '



Subroutine MIEGX, as furnished, terminates the calculation of A
n

with c = 10-6. This could be decreased to increase speed at the loss

of some accuracy. If the routine was converted to double precision

it would be possible to set C to a much smaller value.

MIEGX then computes the preceding values of A by backward recursion
n

and stores them to be used in the Mie summations of

Re[Sl(e)], ImISl(e)], Re[S 2 (e)] and Im[S 2 ()].

The sum is terminated when

fan1 2  + lb 12 < 

I
and when the fractional change in the radar efficiency is also less than

C, i.e., when

Qrad n Qrad n-i <t.
grad

This is more stringent than the first test alone and is a test on the

phase functions as well.

MIEGX returns the following quantities as required by AGAUSX:

Qext' Qsca' Qrad' P(J), PFNZRO, O1STAR, and 02STAR. The P(J) and PFNZRO

as returned by MIEGX are average intensities and must be further normalized

to become the actual phase functions (Eq. 25). 01STAR and 02STAR are the

Legendre expansion coefficients w and w2 "

17



VALIDATION OF THE CODE

Comparison runs ot AGAUS using MIEGX with continued fractions and

a previous version of MIECX based on forward recursion were done in

the region that the forward recursion routine is considered valid (see

final report on Contract DAAD07-78-C-0063, December 1978). The

comparison process was done mainly to verify that coding errors had been

eliminated and that interfacing of the two was accomplished properly.

When one begins to test the limits of a code it is important to

keep in mind the predictions of Mie theory. In the limit as a , Qext

is expected to converge to 2.0 for constant m and k. There may be

fluctuations or ripples but these will be small for large a. The absorption

efficiency factor, Q abs' is dependent on the imaginary part of the index

of refraction. Qabs will be small for the small imaginary part and approaches

1 for the totally absorbing sphere. Qsea is the difference between

Qext and Qabs and therefore is bounded above by Qext for small imaginary

part and equal to Qext for an all real index of refraction. For complex

indices Qsca will approach a value between Q ext-Qabs and Q ext' i.e.,

between 1 and 2 as a becomes large but at no time may Q sca exceed Qext"

The radar efficiency factor is expected to approach a limit between 0 and

1 as a increases. The larger the value of k the smaller the asymptotic

value of Qradar is expected to be. Some oscillation is expected and it

is possible that resonances can produce peak values much larger than the

asymptotic value and minima near zero. Resonances may be more pronounced

for k approximately 0. Values of Qradar larger than 10 would probably be

in error.

18



Table 1 shows the results of comparison calculations using

MIEGX and DAMIE (a Mie routine written by J. V. Dave). The values of

m, k, and a presented were chosen to show the agreement between the two

codes as well as to point out the extended usefulness of MIEGX. Qradar

was included in the comparisons because it appears to be very sensitive

to computational errors since it depends on the difference between a
n

and b . Qradar is also an indicator of the validity of the phase functions

being itself p(180*).

For n = 1.2 - 0.Oi and c = 10 to 400,there is exact agreement between

MIEGX and DAMIE on the value of Q and Qsc There is some variation
ext sca7

between the two for Qradar' Most interesting, though, is the large

result for a - 50 obtained with both routines. This might be explained

by resonance as mentioned previously.

The results obtained for n = 1.2 - 0.6i show the failure of the

DAMTE routine for large c. As discussed above Qsca must be less than

Qext" A value of 7.5 (c = 200) is definite proof of failure. For a = 100

and larger, Qradar has deviated dramatically from the value obtained

with MIEGX. The presence of a slow downward trend in the MIEGX values

of Q and Q as well the near constant value of Q indicate that
ext sca radar

the routine is probably still valid for a of 400. The results for

n= 1.2 -- 1.21 are presented to again display the extended usefulness of

MIEGX with continued fractions.

Based on these results, as well as other test results not included

in this report, MIEGX is likely to be reliable for a's of at least 400

with an index of refraction as large as 5-5i. For the wide variety of test

cases using MIEGX there has never been an obvious error in the calculation

of Q or Q

19



If the user has an application that requires unusual sizes and/or

index of refraction combinations it is suggested that test runs be

done that encompass the region of interest. Comparing the results to

theory should provide an idea of the accuracy in that region.

20
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List of Symbols used in MIGX

SYMBOL Explanation or Definition

A(J) A (Eq. 40) the array
n

ACAPN A for the current n of the Mie sum
n

ALPHA,X Mie size parameter, a = X = 2wr/A

ALPHAD Double precision ALPHA

C(J),CJ The array of cosines of the scattering angles; there are

'IT' elements in the array, the Jth element, rcspectively.

CAY,CAYD The ratio of the imaginary part to the real part of

adjusted refractive index, double precision CAY, respectively.

CAYE The true imaginary part of adjusted refractive index

ELTRMX(1,J) Within n loop: = Re[S 1 (6)1; after n loop: = i2 =

S2 (e) "s*(e)

ELTRMX(2,J) Within n loop: = Im[S ()1; after n loop: iI
* 1

s(e)-s*(e)

ELTRMX(3,J) Within n loop: = RefS 2 (e)]; after n loop: = 3

Re[S (e) .s 2 (e)

ELTRMX(4,J) Within n loop: = Im[S 2 (8)]; after n loop: (-i 4 )
Im[S (O)s*(e)]

EM,EMD The real part of adjusted refractive index, double
precision EM, respectively.

EN,ENL1 Floating point representation of N, N-1, respectively.

FNA,FNAP,FNAPP = a  a 2 , respectively.

FNB,FNBP,FNBPP = bn, b nl, bn- 2, respectively.

N Index in Mie sum

NDELTA The smaller of NDIM and NMX, later used as increment
of N for calculation of A

n

NIDIM The dimension of A array

NMX - X*( +k)+9 an approximation to the maximum N needed

NMIN = NMX+l-NDELTA

22



SYMBOL Explanation or Definition

01STAR,01STRD first order coefficient for Legendre expansion of
the average intensity P(J), douole precision 01STARrespectively

U2STAR,02STRD = w2

P(J) = (i1+i2 )/2, the average intensity at angles, arc cos(C(J)).

'IT' elements in array

PFNZRO = the average intensity at 00

PI(I ,J) ,PI(2,J) = () IT (e ) (q 2

PI(3,J) n-2  'n-i n_3(6) (Eq. 22)

PIlJ,PI2J,PI3J The Jth element of PI(I,J), PI(2,J) and PI(3,J),
respectively

QEXT Unnormalized efficiency factors

QRD Double precision backscatter efficiency factor

QRT = SLUMRR 2 + SUIRI2 present value of unnormalized
backscatter cross section

QRTL2 Previous value of QRT

QRTR = ! QRT - QRTL1I/QRT, ratio of change in QRT to present
value - used as part of exit criterion

QSCAT The unnormalized scattering cross section

QSD Double precision scattering efficiency factor

QTD Double precision extinction efficiency factor

RF = EM - iCAYE, complex refractive index

RRF = 1/RF

RRFX = i/(X*RF)

RX = 1/X

SGR The backscattering (radar) efficiency factor

SGS The scattering efficiency factor

SGT The extinction efficiency factor
N

SUIRR I (-l)n (2n+l) Re[a -b 1
n=2

23
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SYMBOL Explanation or Definition

N

SUMRI - (-1) (2n+l) Imfa n-b n
n-i1~

T(5) Temporary Gtorage variables (real)

TA(l),TA(2) Real and imaginary parts of WFN(l), respectively

TA(3),TA(4) Real and imaginary parts of WFN(2), respectively

TAU(1,J),TAU(2,J), T (e), r (e), -r(e) respectively
TAU (3,3)n2 - n

TAU2J,TAU2J,TAU3J The Jth element of TAU(l,J), TAU(2,J), and TAU(3,J), resp.

TB(l),TB(2) Real and imaginary part of FNA, respectively

TC(l),TC(2) Real and imaginary part of FNB, respectively

TD(l),TD(Z) Real and imaginary parts of FNAP, respectively

TE(l),TE(2) Real and imaginary part of FNBP, respectively

TF(l),TF(2) Real and imaginary parts of FNAPP, respectively

TG(l),TG(2) Real and imaginary parts of FNBPP, respectively

TC1 = (A n ni) + (nix)

TC2 -(A -n ) + (n/x)

TOL - .E-06 exit tolerance for Mie sum

V - NMX+ 3/2

WFN(2) - - 2n-1 Wn- Wx n 2 x

X,ALPHA - Zirr/A

y - X*RP

ZA±4,ZAI1F Temporary complex valued variables in continued
ZDEN,ZNUM fractions calculation of An
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MIEGX - Simplified Flowchart
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r RATIO OF CONSECVTIVE BESSEL FUNCTIONS - Sirnliflt~d Flow Chart

Status upon entry the first time

NMX =NMfX + NDtLTA
NMIN =NMX,+1 -NDELTA

Calculate Ratio of

Bessel Functions
For N=NDELTA

Exit on TOL = 10-6 (Eq. 51)

Abort if V(v) > 20000

J = J Lx

JJN - NMX + NDELTA

ACP = J(J1

26I N e
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NOTES ON FLOWCLART RATIO OF CONSECUTIVE BESSEL FUNCTION

Ihat seems to be a confusing use of variables within the

calculation loop; namely NX, NNIN, NDELTA, JJ and J, is necessary because

thp way the A array is used. The first time through, the ratio J v1iv

and AN is calculated for the largest value of N that might be needed or

is allowed by array size. The ratio is calculated using the continued

fractions routine and the preceding A 's are calculated using backward
n

recursion. If the Mie sum does not converge before it uses all the

calculated A then it becomes necessary to calculate the next A values.n n

If so the ratio and AN are recalculated for a new largest N (this time

twice the original N) and the previous N values of A replace the formern

array elements, i.e., the A array now contains A,+,, ... A2 N. When this

is done the Mie sum continues. This calculation and replacement of the

A array continues until the Mie sum converges.
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